Files
bambulab-store-tracker/plot.ipynb
2025-10-22 11:52:50 +02:00

171 lines
5.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "initial_id",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-29T10:50:58.467758Z",
"start_time": "2025-04-29T10:50:58.109487Z"
}
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"import sqlite3\n",
"\n",
"import plotly.graph_objects as go\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a888e85f7940c39",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-29T10:51:01.444924Z",
"start_time": "2025-04-29T10:50:58.498402Z"
}
},
"outputs": [],
"source": [
"sqlite_file = input(\"Sqlite file: \")\n",
"conn = sqlite3.connect(sqlite_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28dd4fe644bc6a1d",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-29T10:54:39.597755Z",
"start_time": "2025-04-29T10:51:01.878170Z"
},
"scrolled": true
},
"outputs": [],
"source": [
"query = '''\n",
"SELECT timestamp, filament_variant_id, available, region\n",
" FROM availability\n",
" LEFT JOIN measurements ON availability.measurement_id = measurements.id\n",
" LEFT JOIN filament_variants ON availability.filament_variant_id = filament_variants.id\n",
" LEFT JOIN filaments ON filament_variants.filament_id = filaments.id\n",
"'''\n",
"df = pd.read_sql(query, conn)\n",
"\n",
"all_timestamps = list(df['timestamp'].dropna().unique())\n",
"all_regions = list(df['region'].dropna().unique())\n",
"\n",
"available = {region: [] for region in all_regions}\n",
"not_available = {region: [] for region in all_regions}\n",
"\n",
"for timestamp in all_timestamps:\n",
" values = df.query(f'timestamp <= {timestamp}').drop(columns=['timestamp']).drop_duplicates(keep='last', subset=['filament_variant_id', 'region'])\n",
" \n",
" for region in all_regions:\n",
" available[region].append(len(values.query(f'(available == 1) and (region == \"{region}\")')))\n",
" not_available[region].append(len(values.query(f'(available == 0) and (region == \"{region}\")')))\n",
"\n",
"fig = go.Figure()\n",
"for region in all_regions:\n",
" timestamp_datetime = [datetime.fromtimestamp(timestamp) for timestamp in all_timestamps]\n",
" ratios = []\n",
" ratio_texts = []\n",
" for i in range(len(available[region])):\n",
" ratios.append(round((available[region][i] / (available[region][i] + not_available[region][i])) * 100, 2))\n",
" ratio_texts.append(f'({available[region][i]} / {available[region][i] + not_available[region][i]})')\n",
" \n",
" fig.add_trace(go.Scatter(x=timestamp_datetime, y=ratios, text=ratio_texts, mode='lines', name=region.upper()))\n",
"fig.update_layout(title='Availability', xaxis_title='Time', yaxis_title='Availability in %', yaxis_range=[0, 100], yaxis_ticksuffix = '%', hovermode='x unified')\n",
"fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "597ebfa4ca856644",
"metadata": {
"ExecuteTime": {
"end_time": "2025-04-29T10:54:40.928058Z",
"start_time": "2025-04-29T10:54:40.385778Z"
}
},
"outputs": [],
"source": [
"query = '''\n",
"SELECT timestamp, price, filament_variant_id, region\n",
" FROM prices\n",
" LEFT JOIN measurements ON prices.measurement_id = measurements.id\n",
" LEFT JOIN filament_variants ON prices.filament_variant_id = filament_variants.id\n",
" LEFT JOIN filaments ON filament_variants.filament_id = filaments.id\n",
"'''\n",
"df = pd.read_sql(query, conn)\n",
"\n",
"all_timestamps = list(df['timestamp'].dropna().unique())\n",
"all_regions = list(df['region'].dropna().unique())\n",
"\n",
"price_changes = {region: [] for region in all_regions}\n",
"\n",
"# for timestamp in all_timestamps:\n",
"# values = df.query(f'timestamp == {timestamp}')\n",
"\n",
"# for region in all_regions:\n",
"# value = values.query(f'region == \"{region}\"')\n",
"# if value.empty:\n",
"# price_changes[region].append(price_changes[region][-1])\n",
"# else:\n",
"# price_changes[region].append(values[''])\n",
"\n",
"# average price changes\n",
"fig = go.Figure()\n",
"for region in list(df['region'].dropna().unique()):\n",
" changed = 0\n",
" unchanged = 0\n",
" price_changes = []\n",
"\n",
" for _, rows in df.query(f'(price > 0) and (region == \"{region}\")').groupby('filament_variant_id'):\n",
" if len(rows) == 1:\n",
" unchanged += 1\n",
" continue\n",
" else:\n",
" changed += 1\n",
"\n",
" last_price = rows.iloc[0].iloc[1]\n",
" first_price = rows.iloc[-1].iloc[1]\n",
"\n",
" price_changes.append((last_price - first_price) / first_price * 100)\n",
"\n",
" price_changes_percent = sum(price_changes) / len(price_changes)\n",
" fig.add_trace(go.Bar(name=region, text=f'{price_changes_percent:.2f}%', x=[region], y=[price_changes_percent]))\n",
"fig.update_layout(title='Price changes', xaxis_title='Region', yaxis_title='Price changes in %', yaxis_range=[0, 100])\n",
"fig.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}